Assembly planning is the core of automating product assembly, maintenance, and recycling for modern industrial manufacturing. Despite its importance and long history of research, planning for mechanical assemblies when given the final assembled state remains a challenging problem. This is due to the complexity of dealing with arbitrary 3D shapes and the highly constrained motion required for real-world assemblies. In this work, we propose a novel method to efficiently plan physically plausible assembly motion and sequences for real-world assemblies. Our method leverages the assembly-by-disassembly principle and physics-based simulation to efficiently explore a reduced search space. To evaluate the generality of our method, we define a large-scale dataset consisting of thousands of physically valid industrial assemblies with a variety of assembly motions required. Our experiments on this new benchmark demonstrate we achieve a state-of-the-art success rate and the highest computational efficiency compared to other baseline algorithms. Our method also generalizes to rotational assemblies (e.g., screws and puzzles) and solves 80-part assemblies within several minutes.
translated by 谷歌翻译
Language is one of the primary means by which we describe the 3D world around us. While rapid progress has been made in text-to-2D-image synthesis, similar progress in text-to-3D-shape synthesis has been hindered by the lack of paired (text, shape) data. Moreover, extant methods for text-to-shape generation have limited shape diversity and fidelity. We introduce TextCraft, a method to address these limitations by producing high-fidelity and diverse 3D shapes without the need for (text, shape) pairs for training. TextCraft achieves this by using CLIP and using a multi-resolution approach by first generating in a low-dimensional latent space and then upscaling to a higher resolution, improving the fidelity of the generated shape. To improve shape diversity, we use a discrete latent space which is modelled using a bidirectional transformer conditioned on the interchangeable image-text embedding space induced by CLIP. Moreover, we present a novel variant of classifier-free guidance, which further improves the accuracy-diversity trade-off. Finally, we perform extensive experiments that demonstrate that TextCraft outperforms state-of-the-art baselines.
translated by 谷歌翻译
反向工程从其他表示形式进行的CAD形状是许多下游应用程序的重要几何处理步骤。在这项工作中,我们介绍了一种新型的神经网络体系结构,以解决这项具有挑战性的任务,并使用可编辑,受约束的棱镜CAD模型近似平滑的签名距离函数。在训练过程中,我们的方法通过将形状分解为一系列2D轮廓图像和1D包膜函数来重建体素空间中的输入几何形状。然后可以以不同的方式重新组合这些,以允许定义几何损失函数。在推断期间,我们通过首先搜索2D约束草图的数据库来获取CAD数据,以找到近似配置文件图像的曲线,然后将它们挤出并使用布尔操作来构建最终的CAD模型。我们的方法比其他方法更接近目标形状,并输出与现有CAD软件兼容的高度可编辑的约束参数草图。
translated by 谷歌翻译
我们描述了我们使用对CAD表示的深度学习来推断机械组件中交配部分之间的自由度的工作。我们使用由CAD零件和配偶将它们组成的大型实际机械组件的大型数据集训练我们的模型。我们提出了重新定义这些伴侣的方法,以使它们更好地反映组件的运动,并缩小可能的运动轴。我们还进行了一项用户研究,以创建具有更可靠标签的运动声音测试集。
translated by 谷歌翻译
用户建模对于理解用户行为至关重要,对于改善用户体验和个性化建议至关重要。当用户与软件交互时,通过记录和分析系统生成大量命令序列。这些命令序列包含用户目标和意图的线索。但是,这些数据模式是高度非结构化和未标记的,因此标准预测系统很难学习。我们提出了SimCurl,这是一个简单而有效的对比度自我监督的深度学习框架,从未标记的命令序列中学习用户表示。我们的方法介绍了用户会议网络体系结构,以及会话辍学作为一种新颖的数据增强方式。我们在超过十亿命令的现实世界命令序列数据集上训练和评估我们的方法。当将学习的表示形式转移到经验和专业知识分类等下游任务时,我们的方法对现有方法显示了显着改善。
translated by 谷歌翻译
我们提出了Kkexgen,这是一种用于计算机辅助设计(CAD)构造序列的新型自回旋生成模型,其中包含草图和伸出的建模操作。我们的模型利用不同的变压器体系结构编码构造序列的拓扑,几何和挤压变化为分离的代码簿。自回归变压器解码器生成CAD构造序列,共享代码簿向量指定的某些属性。广泛的实验表明,我们的删除代码书表示会生成多样化和高质量的CAD模型,增强用户控制,并有效地探索设计空间。该代码可在https://samxuxiang.github.io/skexgen上找到。
translated by 谷歌翻译
物理产品通常是复杂的组件,组合计算机辅助设计(CAD)软件中建模的多个3D零件。CAD Designers通过使用称为关节的约束对齐各个部件来构建这些程序集。在本文中,我们介绍了可连接,一种基于学习的方法,可以将部件组合在一起以形成关节。可加入使用标准参数CAD文件中提供的弱监管,而无需对象类标签或人类指导。我们的研究结果表明,通过对实体模型的图表表示进行网络预测,我们可以优于多种基线方法,精度(79.53%)接近人类性能(80%)。最后,为了支持未来的研究,我们释放了Fusion 360 Gallery集合数据集,其中包含了具有关于关节,接触表面,孔和底层装配图结构的丰富信息的程序集。
translated by 谷歌翻译
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice. They perform poorly out of sample due to estimation error, they experience extreme weights together with high sensitivity to change in input parameters. The heavy-tail characteristics of financial time series are in fact the cause for these erratic fluctuations of weights that consequently create substantial transaction costs. In robustifying the weights we present a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios. Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and inversion of the covariance operator as a whole and concentrate on robust estimation of the gradient descent increment. Using modern tools of robust statistics we construct a computationally efficient estimator with almost Gaussian properties based on median-of-means uniformly over weights. This robustified Markowitz approach is confirmed by empirical studies on equity markets. We demonstrate that robustified portfolios reach the lowest turnover compared to shrinkage-based and constrained portfolios while preserving or slightly improving out-of-sample performance.
translated by 谷歌翻译
Recommendation Systems (RSs) are ubiquitous in modern society and are one of the largest points of interaction between humans and AI. Modern RSs are often implemented using deep learning models, which are infamously difficult to interpret. This problem is particularly exasperated in the context of recommendation scenarios, as it erodes the user's trust in the RS. In contrast, the newly introduced Tsetlin Machines (TM) possess some valuable properties due to their inherent interpretability. TMs are still fairly young as a technology. As no RS has been developed for TMs before, it has become necessary to perform some preliminary research regarding the practicality of such a system. In this paper, we develop the first RS based on TMs to evaluate its practicality in this application domain. This paper compares the viability of TMs with other machine learning models prevalent in the field of RS. We train and investigate the performance of the TM compared with a vanilla feed-forward deep learning model. These comparisons are based on model performance, interpretability/explainability, and scalability. Further, we provide some benchmark performance comparisons to similar machine learning solutions relevant to RSs.
translated by 谷歌翻译
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
translated by 谷歌翻译